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Conditional Simulation of Random Fields
by Successive Residuals1

J. A. Vargas-Guzmán2,3 and R. Dimitrakopoulos2

This paper presents a new approach to theLU decomposition method for the simulation of stationary
and ergodic random fields. The approach overcomes the size limitations ofLU and is suitable for any
size simulation. The proposed approach can facilitate fast updating of generated realizations with
new data, when appropriate, without repeating the full simulation process. Based on a novel column
partitioning of theL matrix, expressed in terms of successive conditional covariance matrices, the
approach presented here demonstrates thatLU simulation is equivalent to the “successive” solution of
kriging residual estimates plus random terms. Consequently, it can be used for theLU decomposition
of matrices of any size. The simulation approach is termed “conditional simulation by successive
residuals” as at each step, a small set (group) of random variables is simulated with aLU decomposition
of a matrix of updated conditional covariance of residuals. The simulated group is then used to estimate
residuals without the need to solve large systems of equations.

KEY WORDS: conditional simulation,LU decomposition, successive conditional covariances.

INTRODUCTION

Modelling of spatial data in earth sciences and engineering is often based on the
conditional simulation of stationary and ergodic Gaussian random fields. A well
known Gaussian conditional simulation based on the lower–upper (LU ) decompo-
sition of the covariance matrixC of data and grid node locations was introduced
into geostatistics (Davis, 1987a). Conditional simulation byLU decomposition
may be an attractive method because of its efficiency, simplicity, and simultaneous
conditioning to available data during the simulation. More specifically, let a set
Ωd of sample locations correspond to a data vectorzd. A realizationz of a spatial
random fieldZ(x), x ∈ Rn, at a setΩg of q grid node locations conditional toΩd,
is a vector generated from

z= Lw (1)
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wherew is a vector of white noise andL is

L = CU−1 (2)

The size of matrixL poses the well-known limitation to the application of the
method to the generation of realizations up to only few thousand grid nodes.

Using the matrix form of kriging to simultaneously estimate setΩg with the
entire sample setΩd, it has been shown (Alabert, 1987; Davis, 1987a) thatLU
can be written as the sum of a simple estimate plus a random component,

z= A21L−1
11 zd + L22w (3)

where the partitioningL = [ L11 0
A21 L22

] is considered. TheL11 matrix is derived from
theLU decomposition of the data covariance matrix. TheA21 andL22 matrices are
obtained from the partitionedL matrix, generated by the simultaneous decomposi-
tion of the covarianceC in Equation (2). Based on the decomposition in Equation
(2), Equation (3) also has the same computational limitations in generating real-
izations on few thousand nodes at a time.

To enhanceLU , Davis (1987b) suggests replacing theL matrix in Equa-
tion (1) by the square rootB of the covarianceC. If C is symmetric and pos-
itive definite, matrixB can be computed by a minimax polynomial numerical
approximation. This approach does not allow for simultaneous simulation and
conditioning, and it does not guarantee computational stability. Alabert (1987)
proposes the use of overlapping windows inLU , a solution that generates dis-
continuities in realizations. Dietrich and Newsam (1995) extend the approach by
Davis (1987b) using Chebyshev matrix polynomial approximations of the square
root matricesB. Side effects of this approach are a decrease in computational
speed and conditioning can only accommodate a small data set. Dowd and Sara¸c
(1993) improveLU using a ring decomposition that extends the upper limit for
LU to a several thousand points, without resolving the general issue of matrix
size.

A related development is sequential Gaussian simulation (SGS) (Isaaks, 1990;
Journel, 1994). SGS is based on the decomposition of the multivariate probability
density function of a Gaussian random field (Johnson, 1987) and does not have
the size limitations ofLU decomposition. The method conceptually follows the
explanation in Equation (3) that each simulated value is the sum of a kriged value
plus a simulated spatially correlated error. The algorithm performs kriging at a
randomly chosen node to estimate the conditional mean and variance. A random
residual is then drawn from a conditional distribution and is added to the con-
ditional mean to provide a realization at the corresponding node. This simulated
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value is appended to the data set when moving from one node to the next. The
implementation of the technique may require multiple size grids (Deutsch and
Journel, 1998; Isaaks, 1990) that are used to simulate first a coarse grid and sub-
sequently finer grids to ensure the reproduction of the global covariance. An ad-
ditional characteristic of available simulation methods is that updating of existing
realizations with new additional data is only available by repeating the whole
simulation process. A new possible size unlimitedLU approach could facilitate a
simpler and more efficient conditional simulation process and updating of existing
realizations.

This paper presents a novel alternative and new formulation of theLU decom-
position simulation method termed conditional simulation by successive residuals
(CSSR). The method does not have the size limits of traditional simulation by
LU and, at the same time, it can accommodate a relatively simple updating of a
simulated realization if additional data becomes available. The approach is devel-
oped from the partitioning of theL matrix in LU by columns using conditional
covariance matrices. The column partitioning of theL matrix leads to a theoreti-
cal link between simulation viaLU decomposition and the successive estimation
of residuals plus a generated random error. The residual estimates are found to
be equivalent to kriging estimates derived from a successive minimization of the
estimation variance (Vargas-Guzm´an and Yeh, 1999). The column partitioning of
the L matrix leads to the development of the simulation approach suitable for
generating large realizations without having to solve large kriging systems, while
using all of the available data for conditioning. In addition, the residual estimates
in the solution generated for theLU decomposition allow for the fast updating of
old realizations when more data become available.

In the following sections the partition ofL is developed and linked to succes-
sive conditional covariances. This leads to a new form of theL matrix based on
conditional covariances. The extension to the multivariate case follows. Finally,
the resulting conditional simulation algorithm CSSR based on the successive sim-
ulation of residuals is presented.

PROPOSED METHOD

A Partitioned View of LU

Consider generating a large realization of a stationary and ergodic random
function Z(x). The conditioning data is from the set of locationsΩd and is split
into subsets asΩd = Ωp ∪Ωs ∪ · · · ∪Ωt . The first or prior subset of data isΩp,
a second subset of data isΩs and so forth. Since the final conditioning should be
independent of the order in which the samples are utilized, there is no definitive
numerical sequence in this split. The corresponding partitioned sample covariance
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matrix is

Cd =



Cpp Cps Cpr Cpu · · · Cpt

Csp Css Csr Csu . . . Cst

Crp Crs Crr Cru · · · Cr t

Cup Cus Cur Cuu · · · Cut
...

...
...

...
...

Ctp Cts Ctr Ctu · · · Ct t


(4)

The set of grid nodesΩg simulated is split intom subsetsΩg = Ωv ∪ · · · ∪Ωm

each one made of random locations. The subscriptsv, . . . ,m identify each subset
for simulation and there is no numerical sequence to be followed as the order
changes from one realization to another. Instead of thinking of one point at a time,
a set of locations may be spread out along the simulated domain. It is also possible
that a group of simulated points may be within a block or a spatial cluster. The
partitioned covariance matrix made of the matrices of the simulatedmsets of nodes
is given as

Cg =

 Cvv · · · Cvm
...

...
Cmv · · · Cmm

 (5)

The global set, including sample data locations and simulated grid nodes, is
ΩG = Ωd ∪Ωg, and a covariance matrixCG is constructed. This is,

CG = LU =





Cpp Cps Cpr Cpu · · · Cpt

Csp Css Csr Csu · · · Cst

Crp Crs Crr Cru · · · Cr t

Cup Cus Cur Cuu · · · Cut
...

...
...

...
...

Ctp Cts Ctr Ctu · · · Ct t





Cpv · · · Cpm

Csv · · · Csm

Cr v · · · Crm

Cuv · · · Cum
...

...
Ctv · · · Ctm


 Cvp Cvs Cvr Cvu · · · Cvt

...
...

...
...

...
Cmp Cms Cmr Cmu · · · Cmt


 Cvv · · · Cvm

...
...

Cmv · · · Cmm




(6)

Equation (6) is a global covariance matrix utilized in simultaneousLU decompo-
sition. However, it considers partitioning of the conditioning data and the simulated
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set asΩG = Ωp ∪Ωs ∪Ωr ∪Ωu ∪ · · · ∪Ωt ∪Ωv ∪ · · · ∪Ωm. An alternative
way of partitioningCG is by columns followingΩG ∩Ω j where the subscript
are j = (p, s, r, u, . . . t, v, . . .m), this is

CG = bCGp CGs CGr CGu · · ·CGt CGv · · ·CGmc (7)

The L andU matrices can also be written in a partitioned manner without
considering a computation method for each term yet. This is expressed as

L =





L pp

Asp L ss

Arp Brs L rr

Aup Bus Dur Luu
...

...
...

...
Atp Bts Dtr Etu · · · L t t


 Avp Bvs Dvr Evu · · · Fvt

...
...

...
...

...
Amp Bms Dmr Emu · · · Fmt


 L vv

...
Gmv · · · Lmm




(8)

U =





Upp H ps H pr H pu · · · H pt

Uss M sr M su · · · M st

Urr Nru · · · Nr t

Uuu · · · Rut
...

Ut t





H pv · · · H pm

M sv · · · M sm

Nr v · · · Nrm

Ruv · · · Rum
...

...
Qtv · · · Qtm


Uvv · · · Wvm

...
Umm




whereL can also be partitioned in columns

L = bAGp BGs DGr EGu · · · FGt GGv · · · L Gmc (9)

For convenienceL is computed by Cholesky decomposition.
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Successive Conditional Covariances and LU

An analysis of the covariance matrices in terms of the partitionedLU matrices
leads to fundamental relationships. From Equations (6) and (8)

Cpp = L ppUpp (10)

and

Csp= AspUpp (11)

Combining Equations (10) and (11) and consideringCps = CT
sp leads to a first

kriging as

CspC−1
pp = AspL−1

pp = Λ1
ps (12)

whereΛ1
ps is a matrix of kriging weights when just the subset of dataΩp is utilized

to estimate the random variables atΩs locations. Notice that the subset of locations
Ωs may be substituted by any other subset and following partitioning by columns
in Equation (7) this is

CGpC−1
pp = AGpL−1

pp = Λ1
pG (13)

whereAGp is the first column of matrices inL from Equation (9). From Equations
(6) and (8) the covariance within the setΩs is

Css= AspH ps+ L ssUss (14)

and

Cps = L ppH ps (15)

Using Equations (12) and (15), Equation (14) yields

L ssUss= Css− CspC−1
ppCps = ξss (16)

whereξss is the conditional covariance matrix for residuals within subsetΩs.
The analysis proceeds with a following covariance. Equations (6) and (8) give

Crs = ArpH ps+ BrsUss (17)
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Rearranging this in terms of the above equations yields

BrsUss= Crs − CrpC−1
ppCps = ξrs (18)

Using Equations (15) and (18) yields a second kriging of conditional residuals as

BrsL−1
ss = ξrsξ

−1
ss = Λ2

sr (19)

NoticeΩt can be substituted by any other subset and in general for the remaining
grid one gets

BGsL−1
ss = ξGsξ

−1
ss = Λ2

sG (20)

whereBGs is the second column of matricesL in Equation (8) andΛ2
sG is a matrix

of kriging weights for the second column.
The analysis continues by looking at the global partitioned matrices of Equa-

tions (6) and (8). From the product of rowu in L and columnr in U of Equation (8),
a following term is

Cur = AupH pr + BusM sr + Dur Urr (21)

From the above resultsAupH pr = CupC−1
ppCpr , andL ssM sr = Csr − AspH pr =

Csr − CspC−1
ppCpr and using Equation (20) yields

Dur Urr = Cur − CupC−1
ppCpr − ξusξ

−1
ss ξsr (22)

This is a new updated conditional covariance such that

Dur Urr = ξur − ξusξ
−1
ss ξsr (23)

which may be generalized for a columnj and two locationsi andk as a successive
residual conditional covariance. This is

ξ
j+1
ik = ξ j

ik − ξ j
i j

[
ξ

j
j j

]−1
ξ

j
jk (24)

and at aj + 1 columnt in L the kriging of residuals is

FktL−1
t t = ξ j+1

kt

[
ξ

j+1
t t

]−1 = Λ j+1
tk (25)
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using Equation (7) this yields

FGtL−1
t t = ξ j+1

Gt

[
ξ

j+1
t t

]−1 = Λ j+1
tG (26)

whereFGt is any j + 1 column of matrices inL as in Equation (8).

A New Form of L With Conditional Covariances

TheL matrix can be written in terms of successive conditional covariances
and within set conditionalL j j matrices. See, for example, Equations (12), (19),
and (25). Applying this type of equations to theL matrix yields

L =



L pp

L pp

[
C−1

ppCps

]
L ss

...
...

L pp

[
C−1

ppCpt

]
L ss

[
ξ−1

ss ξst

] · · · L t t

L pp

[
C−1

ppCpv

]
L ss

[
ξ−1

ss ξsv

] · · · L t t

[[
ξ j

t t

]−1
ξ j

tv

]
L vv

...
...

...
...

L pp

[
C−1

ppCpm

]
L ss

[
ξ−1

ss ξsm

] · · · L t t

[[
ξ j

t t

]−1
ξ j

tv

]
L vv

[[
ξ j+1
vv

]−1
ξ j+1
vm

] · · · Lmm


(27)

Equation (27) is a very practical way of computingL matrices for large covariance
matrices. Note this proposition is very interesting because the computation of any
j + 1 column only needs the knowledge of the previousj column. This means
that simultaneous computations with the whole covariance matrixCG are not
necessary. Equation (27) can also be written as

L = ⌊L pp
(
C−1

ppCpG
)

L ss
(
ξ−1

ss ξsG

) · · ·L t t
([
ξ

j
t t

]−1
ξ

j
tG

)
L vv

( [
ξ j+1
vv

]−1
ξ

j+1
vG

) · · ·Lmm
⌋

(28)

We have found that Equation (28) is a successiveLU decomposition. Note that the
kriging weights in each term, this leads to

L = [L pp
(
Λ1

pG

)
L ss
(
Λ2

sG

) · · ·L t t
(
Λ j

tG

)
L vv

(
Λ j+1
vG

) · · ·Lmm
]

(29)

The advantage for computation is in the property of using just the previous column
for updating the conditioning, for example, just the third column is used to update
successive covariances in the fourth column and so forth as in Equation (24).
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Conditional Expression of Simulation by LU

The conditionalL j j , computed from updated covariances for the residual
random variables within a setΩ j in Equation (27), are considered separately.
The residuals between the “true”z j and kriging estimateŝz j are computed as
1z j = L j j w j . Then, simulation byLU decomposition can be written as



I pp[
C−1

ppCps
]T Iss

...
...[

C−1
ppCpt

]T [
ξ−1

ss ξst

]T · · · I t t[
C−1

ppCpv
]T [

ξ−1
ss ξsv

]T · · · [[ξ j
t t

]−1
ξ

j
tv

]T I vv
...

...
...

...[
C−1

ppCpm
]T [

ξ−1
ss ξsm

]T · · · [[ξ j
t t

]−1
ξ

j
tm

]T [[
ξ j
vv

]−1
ξ

j
vm
]T · · · Imm





zp
[zs − ẑs]

...
[zt − ẑt ]

L vvwv
...

Lmmwm


=



zp
zs

...
zt
zv
...

zm



(30)

This formulation and Equation (29) can express any simulated set as the sum of
column vectors for a set of pointsΩi as follows

zi =
(
Λ1

pi

)T
zp +

(
Λ2

si

)T
1zs + · · · +

(
Λ j

t i

)T
1zt

+ (Λ j+1
vi

)T
L vvwv + · · · + L i i wi (31)

whereΛ are the residual kriging weights. One recognizes that Equation (31) can
be solved sequentially up to the available conditioning dataΩt . The weights in
Equation (31) can be computed from the successive minimization of the estima-
tion variances shown in Appendix. It can be shown that the simultaneous kriging
solution is equivalent to the sequential or successive kriging solution because the
minimization of estimation variance by steps is independent of the order in which
the data values are utilized (Vargas-Guzm´an and Yeh, 1999). The complete ex-
pression in Equation (31) can not be computed simultaneously unless the updated
conditional covariances are known. The matrix constructed from conditional co-
variance is independent of the data values and will remain unchanged if simulated
locations become new data locations. As a result, updating of old realizations can
be performed with conditional covariances modifying the vector of residuals as
observed in Equation (30).

If all setsΩ j are unit sets as in sequential Gaussian method, then the kriging
weights in Equation (31) are just scalar single numbersaj or conditional spatial
autocorrelations. The conditionalL matrices reduce to a square root of the condi-
tional variance (i.e., kriging standard deviation). We propose an approach, based
on updated conditional covariances, which does not require solving the kriging
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system of equations. Equation (31) becomes

zi − apzp − as1zs − · · ·at1zt = avLvvwv + · · · Liiwi (32)

The left-hand side of Equation (32) is the conditional mean part and the right hand
side is a moving average producing the correlated simulated residual from white
noise. This is analogous to ARMA models.

Extension to the Multivariate Case

The proposed approach can be extended to the multivariate case of a vector
random field Z(x). Equation (30) can be modified by using multivariate conditional
covariances matrices which include conditional cross-covariances.



I pp[
C̄−1

ppC̄ps

]T
I ss

...
...[

C̄−1
ppC̄pt

]T [
ξ̄
−1
ss ξ̄st

]T · · · I t t[
C̄
−1
ppC̄pv

]T [
ξ̄
−1
ss ξ̄sv

]T · · · [[ξ̄ j
t t

]−1
ξ̄

j
tv

]T
I vv

...
...

...
...[

C̄−1
ppC̄pm

]T [
ξ̄
−1
ss ξ̄sm

]T · · · [[ξ̄ j
t t

]−1
ξ̄

j
tm

]T [[
ξ̄

j+1
vv

]−1
ξ̄

j+1
vm

]T · · · Imm





Z p

[Zs − Ẑs]
...

[Zt − Ẑt ]

L̄ vvWv

...

L̄mmWm


=



Z p

Zs

...

Zu

Zv
...

Zm



(33)

whereW are matrices of white noise. The matrices of residuals are1Z i = Z i − Ẑ i .
Note the notation of bars on the covariance andL matrices in Equation (33)
indicates they are multivariate. The residuals are also made of matrices that have
one column for each attribute. The results of the simulation are also matrices
of multivariate realizations. Equation (33) formulates a multivariate conditional
simulation by residuals that can be solved using successive cokriging (Vargas-
Guzmán and Yeh, 1999) to update conditional covariances and cross-covariances
for residuals at each step of the approach. At any step, a matrix of cokriging
weightsΛ̄ j+1

t j to estimate residuals for the setΩ j from residuals of a setΩs is
computed as

ξ̄
j+1
t t Λ̄ j+1

t j = ξ̄ j+1
t j (34)

The conditional cross-covariances in Equation (34) are the off-diagonal terms
of the conditional multivariate covariance matrices and may not be symmetric.
For example, between two sets of locationsΩu andΩv the matrix of updated
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conditional multivariate covariance for two random fieldsZ(x) andY(x) at step
j + 1 is written in terms ofj step conditional covariance and the cokriging weights
as follows

ξ̄
j+1
uv =

[
ξ

j
Zu Zv

ξ
j
ZuYv

ξ
j
Yu Zv

ξ
j
YuYv

]
−
[

Λ j
Zd Zu

Λ j
ZdYu

Λ j
Yd Zu

Λ j
YdYu

]T [
ξ

j
Zd Zv

ξ
j
ZdYv

ξ
j
Yd Zv

ξ
j
YdYv

]
(35)

Then, a realization of the joint simulation can be computed as the sum of matrices
such as

Z i =
(
Λ̄1

pi

)T
Z p +

(
Λ̄2

si

)T
1Zs + · · · +

(
Λ̄ j

t i

)T
1Zt

+ (Λ̄ j+1
vi

)T
L̄ vvWv + · · · + L̄ i i W i (36)

Equation (36) is computed sequentially as Equation (31) in the univariate case.

THE STEP BY STEP ALGORITHM

Univariate Case

Equation (31) summarizes the CSSR method. The algorithm follows the next
steps.

(a) A conditioning data setΩd is partitioned into a number of small subsets
Ωd = Ωp ∪Ωs ∪ · · · ∪Ωt .

(b) Equation (26) is utilized to estimate the entire correlated field with a
small subset of data at each step. In practice, residual conditional co-
variances have values significantly larger than zero only within a local
neighborhood.

(c) If conditioning data are still available continue successive estimation of
residuals in (b), otherwise continue with (d). Note that previously used
data subsets are automatically removed because a conditional covariance
between any location and older data location is zero.

(d) A subset of locations to be simulated is randomly chosen fromΩg =
Ωv ∪ · · · ∪Ωm and may be one of the next alternatives
• The subset of point locations is spread randomly throughout the do-

main;
• The subset of point locations are within a cluster or block for

simulation.
(e) Update conditional covariances between the subset and the whole domain

and within the subset, Equation (24).
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(f) A vectorw j of pure white noise is drawn from a cdf normal (0,1).
(g) The small matrix of residual conditional covariances computed within

the domain subset is decomposed byLU .
(h) The small conditionalL j j matrix is multiplied by the vector of pure white

noise and a vector of residuals is obtained as1z j = L j j w j .
(i) The vector of residuals is added to the previous estimates and stored.
(j) Go to (b) and use the vector of residuals1z j to update estimates every-

where.

This algorithm becomes even simpler than the above if the simulated subset
reduces to a single point at a time, as can be seen from Equation (32). However,
successive simulations using subsets can improve computational speed. The lat-
ter is further enhanced by the successive approach, as it only requires that the
current j step conditional covariances are stored in memory until right after they
are updated at thej + 1 step. The updating of covariances only requires matrix
products.

Multivariate Case

The multivariate simulation implies modifications of the algorithm proposed
for the univariate case. Every covariance matrix must be changed by a multivari-
ate matrix of covariances. Data are partitioned into multivariate groups of point
locations but also may split into attributes and locations. The introduction of sev-
eral attributes leads to successive cokriging which is used instead of kriging. The
residuals are matrices computed in a similar way to the univariate case and the
pure white noise is also in the form of matrices where each column is allocated
to one attribute. Computation of conditionalL matrices is made from multivariate
conditional covariances matrices.

SUMMARY AND CONCLUSIONS

A novel approach to conditional simulation based on theLU decomposition
using conditional covariances is presented in this paper. The approach involves a
partitioning of theL matrix by columns using conditional covariance terms that
allow theLU decomposition of a covariance matrix to be performed in a successive
fashion. Conditional covariances from the previous column are used to compute
the terms of the next column in theL matrix. It has been shown that the complete
L matrix can be computed as the product of kriging weights for residuals and
conditionalL j j matrices obtained from updated residual conditional covariances
within a group of locations, as is shown in Equations (26) and (27). When the
simulation process is carried out for a single node at a time, the conditionalL j j
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is reduced to the square root of the kriging variance, thus removing the need
for matrix inversion calculations in the updating of residual estimates. This new
approach allows for partitioned computation of largeL matrices and successive
simulation by residuals.

The completeL matrix can be computed by following a known sequence,
or pathway, of nodes to be simulated. The computation ofL is done by columns
or a group of columns at a time, using conditional covariances from the previ-
ous group of columns only. The order of the columns in the simultaneousLU
decomposition carries on information about the pathway being followed by the
simulation process. Hence theL matrices can be considered different for different
realizations.

The proposed CSSR method eliminates the computational upper limit of the
traditional LU decomposition and allows for any size simulations, thus providing
an alternative option for the simulation of very large Gaussian random fields. While
retaining the relative simplicity and efficiency attributed to traditionalLU -based
approaches, successive conditional simulation by residuals has the computationally
attractive feature of being able to simulate several nodes at a time.

Although theL matrix computed by columns does not need to be kept, a
storedL matrix can easily facilitate the conditional updating of the realizations.
If a set of locationsΩ j within the simulated domain becomes known, updating
of the realizations is performed using a product ofL by a modified vector of
residuals. The use of future updating requires knowledge of the future sequence of
data locations that may become available and assumes that the covariance model
remains invariant as additional data are included.

There are several areas of possible future research based on the developments
of this paper. This may include a detailed study of computational efficiency of the
proposed successive simulation algorithm. The extension of the approach to the
simulation of non-Gaussian random fields, the direct block support scale simula-
tion and space time simulations also deserve research. In addition, the theoretical
contribution of partitioning of theL matrix by columns opens possibilities for
research on the successive decomposition of matrices of higher-order moments
for nonlinear and multipoint geostatistics.
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APPENDIX: SUCCESSIVE OR SEQUENTIAL KRIGING

Successive or sequential kriging (Vargas-Guzm´an and Yeh, 1999) is recalled
in several parts of this paper. The term successive is used to avoid confusion
with sequential simulations. Sequential kriging is the estimator that minimizes
the estimation variance by steps rather than simultaneously. The data set is split
into several subsets, and each subset may be a single datum location. At some
step j + 1 of the estimation process, the utilized sample data vector is considered
partitioned in oldzp and new sampleszs. This is

zd =
[

zp

zs

]
(A1)

Then, sequential kriging consists in using new sample locations to update estimates
previously made with the old samples at stepj . So at each step, new sample data
locations become available. The simplified version of the estimator is

ẑ j+1
o = [Λ j

po

]T
zp +

[
Λ j+1

so

]T (
zs −

[
Λ j

ps

]T
zp
)

(A2)

whereΛ j
po are weights for estimation at a point with the old data andΛ j+1

so are
weights for updating the estimate with residuals. The kriging estimations are per-
formed everywhere in the domain without need of local neighborhood or other
mechanisms.

From the second to the last step, sequential kriging is performed using suc-
cessively updated conditional covariances and residuals. The process continues
until no more data are available. By expressing the estimation variance in terms of
the successive weights of Equation (A2), Vargas-Guzm´an and Yeh (1999) show
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a sequential set of kriging equations in terms of updated conditional covariances
to be [

ξ
j
t t −

(
ξ

j
ts

)T(
ξ j

ss

)−1
ξ

j
st

]
Λ j+1

to =
[
ξ

j
to −

(
ξ

j
ts

)T(
ξ j

ss

)−1
ξ j

so

]
(A3)

These updated conditional covariances are the same like those we have found in
theL matrix, see Equation (24).


