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Conditional Simulation of Random Fields
by Successive Residuals

J. A. Vargas-Guzmén®® and R. Dimitrakopoulos?

This paper presents a new approach to thé decomposition method for the simulation of stationary
and ergodic random fields. The approach overcomes the size limitatitn$ ahd is suitable for any

size simulation. The proposed approach can facilitate fast updating of generated realizations with
new data, when appropriate, without repeating the full simulation process. Based on a novel column
partitioning of theL matrix, expressed in terms of successive conditional covariance matrices, the
approach presented here demonstrates thasimulation is equivalent to the “successive” solution of
kriging residual estimates plus random terms. Consequently, it can be used fdy thecomposition

of matrices of any size. The simulation approach is termed “conditional simulation by successive
residuals” as at each step, a small set (group) of random variables is simulated Wittdacomposition

of a matrix of updated conditional covariance of residuals. The simulated group is then used to estimate
residuals without the need to solve large systems of equations.

KEY WORDS: conditional simulationl.U decomposition, successive conditional covariances.
INTRODUCTION

Modelling of spatial data in earth sciences and engineering is often based on the
conditional simulation of stationary and ergodic Gaussian random fields. A well
known Gaussian conditional simulation based on the lower—upfpBrdecompo-

sition of the covariance matri€ of data and grid node locations was introduced
into geostatistics (Davis, 1987a). Conditional simulationLby decomposition

may be an attractive method because of its efficiency, simplicity, and simultaneous
conditioning to available data during the simulation. More specifically, let a set
Q4 of sample locations correspond to a data vezjoA realizationz of a spatial
random fieldZ(x), x € R", at a sef2q of g grid node locations conditional fg,

is a vector generated from

z=1Llw Q)
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598 Vargas-Guznan and Dimitrakopoulos
wherew is a vector of white noise and is
L=cut 2)

The size of matrixX. poses the well-known limitation to the application of the
method to the generation of realizations up to only few thousand grid nodes.
Using the matrix form of kriging to simultaneously estimateQgtwith the
entire sample sef)q, it has been shown (Alabert, 1987; Davis, 1987a) that
can be written as the sum of a simple estimate plus a random component,

Z= A21LI:LlZd + Loow (3)

where the partitioning = [kéi 822] is considered. The 11 matrix is derived from
theLU decomposition of the data covariance matrix. FagandL o, matrices are
obtained from the partitiondd matrix, generated by the simultaneous decomposi-
tion of the covarianc€ in Equation (2). Based on the decomposition in Equation
(2), Equation (3) also has the same computational limitations in generating real-
izations on few thousand nodes at a time.

To enhance_U, Davis (1987b) suggests replacing thematrix in Equa-
tion (1) by the square rod of the covarianceC. If C is symmetric and pos-
itive definite, matrixB can be computed by a minimax polynomial humerical
approximation. This approach does not allow for simultaneous simulation and
conditioning, and it does not guarantee computational stability. Alabert (1987)
proposes the use of overlapping windowsLid, a solution that generates dis-
continuities in realizations. Dietrich and Newsam (1995) extend the approach by
Davis (1987b) using Chebyshev matrix polynomial approximations of the square
root matricesB. Side effects of this approach are a decrease in computational
speed and conditioning can only accommodate a small data set. Dowd and Sara,
(1993) improvelLU using a ring decomposition that extends the upper limit for
LU to a several thousand points, without resolving the general issue of matrix
size.

Arelated developmentis sequential Gaussian simulation (SGS) (Isaaks, 1990;
Journel, 1994). SGS is based on the decomposition of the multivariate probability
density function of a Gaussian random field (Johnson, 1987) and does not have
the size limitations of.U decomposition. The method conceptually follows the
explanation in Equation (3) that each simulated value is the sum of a kriged value
plus a simulated spatially correlated error. The algorithm performs kriging at a
randomly chosen node to estimate the conditional mean and variance. A random
residual is then drawn from a conditional distribution and is added to the con-
ditional mean to provide a realization at the corresponding node. This simulated



Conditional Simulation of Random Fields by Successive Residuals 599

value is appended to the data set when moving from one node to the next. The
implementation of the technique may require multiple size grids (Deutsch and
Journel, 1998; Isaaks, 1990) that are used to simulate first a coarse grid and sub-
sequently finer grids to ensure the reproduction of the global covariance. An ad-
ditional characteristic of available simulation methods is that updating of existing
realizations with new additional data is only available by repeating the whole
simulation process. A new possible size unlimitédl approach could facilitate a
simpler and more efficient conditional simulation process and updating of existing
realizations.

This paper presents a novel alternative and new formulation éldhdecom-
position simulation method termed conditional simulation by successive residuals
(CSSR). The method does not have the size limits of traditional simulation by
LU and, at the same time, it can accommodate a relatively simple updating of a
simulated realization if additional data becomes available. The approach is devel-
oped from the partitioning of the matrix in LU by columns using conditional
covariance matrices. The column partitioning of thenatrix leads to a theoreti-
cal link between simulation viaU decomposition and the successive estimation
of residuals plus a generated random error. The residual estimates are found to
be equivalent to kriging estimates derived from a successive minimization of the
estimation variance (Vargas-Guamand Yeh, 1999). The column partitioning of
the L matrix leads to the development of the simulation approach suitable for
generating large realizations without having to solve large kriging systems, while
using all of the available data for conditioning. In addition, the residual estimates
in the solution generated for thé) decomposition allow for the fast updating of
old realizations when more data become available.

In the following sections the partition af is developed and linked to succes-
sive conditional covariances. This leads to a new form ofLthatrix based on
conditional covariances. The extension to the multivariate case follows. Finally,
the resulting conditional simulation algorithm CSSR based on the successive sim-
ulation of residuals is presented.

PROPOSED METHOD
A Partitioned View of LU

Consider generating a large realization of a stationary and ergodic random
function Z(x). The conditioning data is from the set of locatidig and is split
into subsets aQqy = QU Qs U --- U Q. The first or prior subset of data$3p,
a second subset of dataSy and so forth. Since the final conditioning should be
independent of the order in which the samples are utilized, there is no definitive
numerical sequence in this split. The corresponding partitioned sample covariance
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matrix is

_CPP CPS CPT CPU Cpt_
Csp Css Csr Csu s Cst
Crp Crs Crr Cru Crt

Cd = Cup Cus Cur Cuu Cut (4)

_Ctp Cts Ctr Ctu Ctt _

The set of grid node§)y simulated is split intan subsetd2y = Q, U --- U O,

each one made of random locations. The subscyipts. , m identify each subset

for simulation and there is no numerical sequence to be followed as the order
changes from one realization to another. Instead of thinking of one point at a time,
a set of locations may be spread out along the simulated domain. Itis also possible
that a group of simulated points may be within a block or a spatial cluster. The
partitioned covariance matrix made of the matrices of the simutatgzts of nodes

is given as

va Cvm
Co=| : (%)
Cmv te Cmm

The global set, including sample data locations and simulated grid nodes, is
Q¢ = Q4 U 24, and a covariance matr@g is constructed. This is,

_CPP CPS CP" CPU"'CPt_ _CPU "'Cpm_
Csp Css Csr Csy -+ Gyt Csv -+ Csm
Crp Cis Cit Cry -+ Cyt Cry - Cim
Cup Cus Cur Cyy -+ Cit Cuw -+ Cum

. . . . . . . 6
| Cip Cis C Cuw -+ Cu | | Cuv -+ Cum ©)

Cup CvS Cvr Cuu Cvt va Cvm

Cmp Cms Cmr Cmu e Cmt Cmv e Cmm

Equation (6) is a global covariance matrix utilized in simultanddusdecompo-
sition. However, it considers partitioning of the conditioning data and the simulated
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set asQg = QU U UQ,U---UQ U, U---UQy, An alternative
way of partitioningCg is by columns followingQ2g N ©2; where the subscript
arej =(p,s,r,u,...t,v,...m), thisis

Ce =1CspCassCqr Cou--Cot Cov -+ - Coml (7

The L andU matrices can also be written in a partitioned manner without
considering a computation method for each term yet. This is expressed as

L pp ] ]
Asp Lss
Arp Brs Lyt
Aup Bus Dyr Ly
L = . . . . 8
| Awp Bis Dy Eqy -+ Lyt | ®)
Aup Bus Dvr Evu th va
Amp Bms Dmr Emu - -+ Fmt Gmo - Lim |
_-UppHpsHerpu"'Hpt_ _Hpu"'Hpm__
Uss Mgt Mgy -+ - Mgt Mgy -+ Mgm
Urr Nry -+ Npt Nry -+ Nrm
Uuwu -+ Rut Ruv -+ Rum
U= : . .
i Ut | | Q-+ Qtm |
_va "'va_
L Umm

whereL can also be partitioned in columns

L = |AcpBesDar Ecu--- Fot Gev -+ - Laml )

For conveniencé is computed by Cholesky decomposition.
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Successive Conditional Covariances and LU

An analysis of the covariance matrices in terms of the partitibtédhatrices
leads to fundamental relationships. From Equations (6) and (8)

Cpp =L ppU pp (10)
and
Csp=AspUpp (12)

Combining Equations (10) and (11) and consider@g = Clp leads to a first
kriging as

CspCrp = Aspl pp = As (12)

whereA}JS is a matrix of kriging weights when just the subset of datgis utilized
to estimate the random variable€h{locations. Notice that the subset of locations
Qs may be substituted by any other subset and following partitioning by columns
in Equation (7) this is

CepCpp = Acpl pa = Al (13)

whereAg, is the first column of matrices in from Equation (9). From Equations
(6) and (8) the covariance within the $@¢ is

Css = AspHps + LssUss (14)
and
Cps = LppHps (15)
Using Equations (12) and (15), Equation (14) yields
LssUss = Css — CspCppCps = £ss (16)

where£ . is the conditional covariance matrix for residuals within sul§set
The analysis proceeds with a following covariance. Equations (6) and (8) give

Cis = ArpH ps + BrsUss (17)
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Rearranging this in terms of the above equations yields
BrsUss = Crs — CrpCppCps = s (18)
Using Equations (15) and (18) yields a second kriging of conditional residuals as
BrsLos = &rséae = A% (19)

Notice£2; can be substituted by any other subset and in general for the remaining
grid one gets

Baskss = £osbes = Adc (20)

whereBgs is the second column of matricesn Equation (8) and\2; is a matrix
of kriging weights for the second column.
The analysis continues by looking at the global partitioned matrices of Equa-
tions (6) and (8). From the product of rawn L and columrr in U of Equation (8),
a following term is

Cur = AupH pr + BusMsr + Duyr Uy (21)

From the above result,pH o = CupCpiCpr, andL Mg = Cor — AgpH pr =
Csr — CspCypCpr and using Equation (20) yields

DurUrr = Cyr — CupCEéCpr - éusgs_slgsr (22)
This is a new updated conditional covariance such that

DyrUnr = éur - éusggslésr (23)

which may be generalized for a colunand two locations andk as a successive
residual conditional covariance. This is

et =gl - ghleh] e (24)
and at aj + 1 columnt in L the kriging of residuals is

_ jHirej+17-1 j+1
Fktl—ttl= |J(:r [ tJt+] =At]|:r (25)
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using Equation (7) this yields
Forly' = €5 [eh™] ' = Alg? (26)
whereFg; is anyj + 1 column of matrices il as in Equation (8).
A New Form of L With Conditional Covariances

TheL matrix can be written in terms of successive conditional covariances
and within set conditionadl j; matrices. See, for example, Equations (12), (19),
and (25). Applying this type of equations to thematrix yields
_ Lo

L op [CopCos] Lss

op [CpaCot] Lss [¢0€s] - Lt

L
Lon [CoiCh] Lus[€sden] -+ Lu[[€h] €l Lo

| Lop[CoiCom] Lss[€sd€am] -+ Lu[[€h] "€h] Lul[€17]) €041 -+ Lonm
27)

Equation (27) is a very practical way of computingnatrices for large covariance
matrices. Note this proposition is very interesting because the computation of any
j + 1 column only needs the knowledge of the previgusolumn. This means

that simultaneous computations with the whole covariance m@tgixare not
necessary. Equation (27) can also be written as

L = |Lpp (CpiCpo) Lss(€sdésc) -~ Lue([€h] '€ls)
Loo([€574]77€05Y) - Loom) 28)

We have found that Equation (28) is a succesklvedecomposition. Note that the
kriging weights in each term, this leads to

L= [L PP(A][;G) LSS(Age) L (AtjG) Loy (Aigl) T me] (29)
The advantage for computation is in the property of using just the previous column

for updating the conditioning, for example, just the third column is used to update
successive covariances in the fourth column and so forth as in Equation (24).
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Conditional Expression of Simulation by LU

The conditionall j;, computed from updated covariances for the residual
random variables within a s&2; in Equation (27), are considered separately.
The residuals between the “truej and kriging estimateg; are computed as
Azj = Lj;w;j. Then, simulation by.U decomposition can be written as

I'pp 7 L, - .
p

[CEéCpS]T Iss [Zs _ 25] Zz

[Cgéépt]T [55751.§st]T It [z - #] | = Z.t

[CorCp]” [€d€s,]" - [[€h] €] Lo LyuWy z.v

—1: T fl: T j 7:1 i 1T e 7:1 iqT _Lmn.WWm_ L Zm
L [Cppcpm] [£Ss &sm] T [[En] €tm] [[gvv] ﬁum] - mm |

(30)

This formulation and Equation (29) can express any simulated set as the sum of
column vectors for a set of poin€; as follows

+ (Aifl)Twau + -+ Liiw, (31)

whereA are the residual kriging weights. One recognizes that Equation (31) can
be solved sequentially up to the available conditioning dataThe weights in

Equation (31) can be computed from the successive minimization of the estima-
tion variances shown in Appendix. It can be shown that the simultaneous kriging
solution is equivalent to the sequential or successive kriging solution because the
minimization of estimation variance by steps is independent of the order in which
the data values are utilized (Vargas-Guamend Yeh, 1999). The complete ex-
pression in Equation (31) can not be computed simultaneously unless the updated
conditional covariances are known. The matrix constructed from conditional co-
variance is independent of the data values and will remain unchanged if simulated
locations become new data locations. As a result, updating of old realizations can
be performed with conditional covariances modifying the vector of residuals as
observed in Equation (30).

If all sets€2; are unit sets as in sequential Gaussian method, then the kriging
weights in Equation (31) are just scalar single numlagrer conditional spatial
autocorrelations. The conditionalmatrices reduce to a square root of the condi-
tional variance (i.e., kriging standard deviation). We propose an approach, based
on updated conditional covariances, which does not require solving the kriging
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system of equations. Equation (31) becomes
Z _apzp_a-SAZS_"'atAZt =avavwv+"'Liiwi (32)
The left-hand side of Equation (32) is the conditional mean part and the right hand

side is a moving average producing the correlated simulated residual from white
noise. This is analogous to ARMA models.

Extension to the Multivariate Case

The proposed approach can be extended to the multivariate case of a vector
random field Zx). Equation (30) can be modified by using multivariate conditional
covariances matrices which include conditional cross-covariances.

T e 1r z, 1 .
[CoiChs]” s [Ze— 24 ’
[CotCul” [€stad - I Z-2]|=|2,
[ConCr] [Ewta] - [[E]E]  1a Lo\ “
D o T o — L Zm

| [CoiConl” [Esaten]” - [[€1) "€l [ €05 -ty | L oW

(33)

whereW are matrices of white noise. The matrices of residualadre= Z; — Zi .

Note the notation of bars on the covariance éndnatrices in Equation (33)
indicates they are multivariate. The residuals are also made of matrices that have
one column for each attribute. The results of the simulation are also matrices
of multivariate realizations. Equation (33) formulates a multivariate conditional
simulation by residuals that can be solved using successive cokriging (Vargas-
Guzmdn and Yeh, 1999) to update conditional covariances and cross-covariances
for residuals at each step of the approach. At any step, a matrix of cokriging
weightsAtJj+l to estimate residuals for the s@t from residuals of a sef2s is
computed as

1+l —j+1
wAT =€ (34)

The conditional cross-covariances in Equation (34) are the off-diagonal terms
of the conditional multivariate covariance matrices and may not be symmetric.
For example, between two sets of locatidRg and €2, the matrix of updated
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conditional multivariate covariance for two random field&) andY(x) at step
j + liswritteninterms of step conditional covariance and the cokriging weights
as follows

_ j i AJ Al T j j
:le |:€zuzv €ZUYLC|_|: Z4Z4 zdvui| |:€zdzv gzdyv:| (35)

i j i i j j
€z, &vv, Az, Ay, §viz, &vav,

Then, a realization of the joint simulation can be computed as the sum of matrices
such as

Zi = (K%)i)TZp + (Kii)TAZs +-ot (‘Ktji)TAZt

+ (ij)iJrl)TEvau R [ii Wi (36)

Equation (36) is computed sequentially as Equation (31) in the univariate case.

THE STEP BY STEP ALGORITHM
Univariate Case

Equation (31) summarizes the CSSR method. The algorithm follows the next
steps.

(a) A conditioning data sdR is partitioned into a number of small subsets
Qy=2,UQsU--- U Q.
(b) Equation (26) is utilized to estimate the entire correlated field with a
small subset of data at each step. In practice, residual conditional co-
variances have values significantly larger than zero only within a local
neighborhood.
If conditioning data are still available continue successive estimation of
residuals in (b), otherwise continue with (d). Note that previously used
data subsets are automatically removed because a conditional covariance
between any location and older data location is zero.
(d) A subset of locations to be simulated is randomly chosen f2yn=
Q, U---UQy, and may be one of the next alternatives
e The subset of point locations is spread randomly throughout the do-
main;
e The subset of point locations are within a cluster or block for
simulation.
(e) Update conditional covariances between the subset and the whole domain
and within the subset, Equation (24).

(c

~—
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(f) A vectorw; of pure white noise is drawn from a cdf normal (0,1).

(g) The small matrix of residual conditional covariances computed within
the domain subset is decomposed .

(h) The small conditiondl j; matrix is multiplied by the vector of pure white
noise and a vector of residuals is obtained\as = L j;w;.

(i) The vector of residuals is added to the previous estimates and stored.

(j) Go to (b) and use the vector of residualg; to update estimates every-
where.

This algorithm becomes even simpler than the above if the simulated subset
reduces to a single point at a time, as can be seen from Equation (32). However,
successive simulations using subsets can improve computational speed. The lat-
ter is further enhanced by the successive approach, as it only requires that the
currentj step conditional covariances are stored in memory until right after they
are updated at th¢ + 1 step. The updating of covariances only requires matrix
products.

Multivariate Case

The multivariate simulation implies modifications of the algorithm proposed
for the univariate case. Every covariance matrix must be changed by a multivari-
ate matrix of covariances. Data are partitioned into multivariate groups of point
locations but also may split into attributes and locations. The introduction of sev-
eral attributes leads to successive cokriging which is used instead of kriging. The
residuals are matrices computed in a similar way to the univariate case and the
pure white noise is also in the form of matrices where each column is allocated
to one attribute. Computation of conditionamatrices is made from multivariate
conditional covariances matrices.

SUMMARY AND CONCLUSIONS

A novel approach to conditional simulation based onltbledecomposition
using conditional covariances is presented in this paper. The approach involves a
partitioning of theL matrix by columns using conditional covariance terms that
allow theLU decomposition of a covariance matrix to be performed in a successive
fashion. Conditional covariances from the previous column are used to compute
the terms of the next column in thematrix. It has been shown that the complete
L matrix can be computed as the product of kriging weights for residuals and
conditionallL ;; matrices obtained from updated residual conditional covariances
within a group of locations, as is shown in Equations (26) and (27). When the
simulation process is carried out for a single node at a time, the conditigpal
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is reduced to the square root of the kriging variance, thus removing the need
for matrix inversion calculations in the updating of residual estimates. This new
approach allows for partitioned computation of latgenatrices and successive
simulation by residuals.

The completedl matrix can be computed by following a known sequence,
or pathway, of nodes to be simulated. The computation ©&f done by columns
or a group of columns at a time, using conditional covariances from the previ-
ous group of columns only. The order of the columns in the simultankbus
decomposition carries on information about the pathway being followed by the
simulation process. Hence thanatrices can be considered different for different
realizations.

The proposed CSSR method eliminates the computational upper limit of the
traditional LU decomposition and allows for any size simulations, thus providing
an alternative option for the simulation of very large Gaussian random fields. While
retaining the relative simplicity and efficiency attributed to traditidnd+based
approaches, successive conditional simulation by residuals has the computationally
attractive feature of being able to simulate several nodes at a time.

Although theL matrix computed by columns does not need to be kept, a
storedL matrix can easily facilitate the conditional updating of the realizations.

If a set of location®?; within the simulated domain becomes known, updating

of the realizations is performed using a productLoby a modified vector of
residuals. The use of future updating requires knowledge of the future sequence of
data locations that may become available and assumes that the covariance model
remains invariant as additional data are included.

There are several areas of possible future research based on the developments
of this paper. This may include a detailed study of computational efficiency of the
proposed successive simulation algorithm. The extension of the approach to the
simulation of non-Gaussian random fields, the direct block support scale simula-
tion and space time simulations also deserve research. In addition, the theoretical
contribution of partitioning of th&. matrix by columns opens possibilities for
research on the successive decomposition of matrices of higher-order moments
for nonlinear and multipoint geostatistics.
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APPENDIX: SUCCESSIVE OR SEQUENTIAL KRIGING

Successive or sequential kriging (Vargas-Gammhd Yeh, 1999) is recalled
in several parts of this paper. The term successive is used to avoid confusion
with sequential simulations. Sequential kriging is the estimator that minimizes
the estimation variance by steps rather than simultaneously. The data set is split
into several subsets, and each subset may be a single datum location. At some
stepj + 1 of the estimation process, the utilized sample data vector is considered
partitioned in oldz, and new samples;. This is

_| %
=2 (A1)
Then, sequential kriging consists in using new sample locations to update estimates
previously made with the old samples at sfef$o at each step, new sample data
locations become available. The simplified version of the estimator is

5j+1 _ i T j+1 T j T

L T = [A 0] Zp+ [Aso ] (25_ [Aps] ZP) (A2)
WhereA{)0 are weights for estimation at a point with the old data adg* are
weights for updating the estimate with residuals. The kriging estimations are per-
formed everywhere in the domain without need of local neighborhood or other
mechanisms.

From the second to the last step, sequential kriging is performed using suc-
cessively updated conditional covariances and residuals. The process continues
until no more data are available. By expressing the estimation variance in terms of
the successive weights of Equation (A2), Vargas-Gaizrand Yeh (1999) show
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a sequential set of kriging equations in terms of updated conditional covariances
to be

[ — (&) (el el AL =€)y — (el)T(ed) el (A3)

These updated conditional covariances are the same like those we have found in
theL matrix, see Equation (24).



